
Open Source Tips

Table of Contents
Preface. 2

Introduction. 3

DOs . 4

Readme file . 4

Code block . 5

Contribution file . 5

Explore open source projects . 6

Code of Conduct . 6

GitHub template files . 7

Licensing . 8

Git commit . 9

Little and often . 9

Plan ahead . 9

GitHub Issue / Task . 10

Always respond - Issue and Pull Request . 10

Pull Requests . 10

Review . 11

Automation - Tests, Continuous Integration (CI), Continuous Deployment (CD) 11

Prototyping - Get a prototype to your users quickly . 11

Optimal time - work when at your best . 11

Not enough time. 12

Codebase improvements - Leave the codebase better than you found it. 12

Fail fast with faster feedback loops . 12

Accessible. 12

GitHub Labels . 13

GitHub Milestones . 13

GitHub Releases / Tags . 14

Branching. 14

DON’Ts. 15

Big bang project . 15

God commit . 15

God Pull Request . 15

CV Driven Development . 15

Weakest Dependency . 15

Appendix . 17

Acronyms . 17

1

Abstract

This book contains some common DOs & DON’Ts for Open Source software.

Preface
The Open Source community is thriving. Each day the number of Open Source projects grows, as
does the army of contributors that maintain them. While this is exciting for the industry, it can be
daunting as a developer new to the community. This book aims to provide some tips for newcomers
to help them avoid the pitfalls of Open Source development and learn from the community’s
collective wisdom.

As the ancient proverb goes, "Time and tide [and technology] wait for no man". And to the best of our
ability, neither will this book. Remember to check the version number for updates! We’re currently
on v0.1.17.

We would love your help in keeping this book updated. Your comments, suggestions and pull
requests are most welcome. You can find the repository on GitHub: https://github.com/eddiejaoude/
book-open-source-tips.

If you have any questions, please contact the author, Eddie Jaoude on https://twitter.com/
eddiejaoude.

Resources . 17

2

https://github.com/eddiejaoude/book-open-source-tips
https://github.com/eddiejaoude/book-open-source-tips
https://twitter.com/eddiejaoude
https://twitter.com/eddiejaoude

Introduction
Open Source is dominating the software industry. Its champions include well known organisations
like Facebook, Twitter, Netflix, LinkedIn and Google (Android/Chrome), but more significantly, an
army of passionate individual developers around the world. Their efforts have impacted almost
every part of computer science, culminating in millions of open source projects, with billions of
lines of code!

While this abundant ecosystem has been of huge benefit to the whole industry, it can also make it
difficult for newcomers to know where to start. If you’re a newcomer, you might be faced with
questions such as "How can I contribute to the Open Source community?" Or, "How do I choose
between so many competing projects?". The following DOs and DON’Ts aim to address some of those
basic questions, plus some pointers for aspiring Open Source developers.

Let’s dive right in.

TIP

Projects not made public at the beginning are at higher risk of having private
credentials committed in the history. Therefore it is highly recommended to make
projects public from the start, stating they are not finished is not an excuse as they will
never be finished. If public from day one, then the right mindset is used and thus
reduces the risk.

3

DOs

Readme file
Documentation is usually left to last. Start every project with at least a README.md with basic
information, for example a description & quickstart guide, if you change features or functionality,
try at least to update this with your commits.

Example README.md

Name of Project

Include any project badges (e.g. CI) here at the top.

Description of project & its goals.

Also include what it does not do.

Screenshots

Nothing says more than screenshots.

Dependencies

Any dependencies required by the project.

Installation

How to install on Mac...

How to install on Linux...

How to install on Windows...

Usage

How to use the project

Contribution SetUp

If people would like to contribute, what steps should they take.

Overview here and a link to the `CONTRIBUTION.md` file with more details

4

Code of Conduct

Overview of Code of Conduct, with link to `CODE_OF_CONDUCT.MD`

Change log / Release history

Major version & breaking changes

Meta data

Any other useful information.

Code block
Use syntax highlighting within code blocks in documentation to make it easier to read.

GitHub syntax highlighting

Contribution file
One of the main benefits of an Open Source project & its community contributions. Lower the
barrier to entry with a CONTRIBUTING.md file in the root of your Open Source project. Read more
about GitHub Contribution file

Often times open source projects place a CONTRIBUTING file in the root
directory. It explains how a participant should do things like format code,
test fixes, and submit patches. Here is a fine example from puppet and

5

https://help.github.com/articles/creating-and-highlighting-code-blocks/#syntax-highlighting
https://github.com/blog/1184-contributing-guidelines

another one from factory_girl_rails. From a maintainer’s point of view, the
document succinctly communicates how best to collaborate. And for a
contributor, one quick check of this file verifies their submission follows the
maintainer’s guidelines.

— GitHub, GitHub Contributing Guidelines

GitHub Contributing Guidelines

Explore open source projects
Remember to explore other open source projects out there to see how other projects have been
successfully managed, and what their outcomes looked like.

Here are 10 examples of open source projects to start you off:

• 24 Pull Requests

• dwyl - do what you love

• Founders & Coders

• Hack Brexit

• We Rock Tech

• Women Who Hack For Non Profits

• Elixir Koans

• Codebar

• Rails Girls Summer of Code

• Vote America

TIP

The more open source projects you have explored, the more you’ll see what practices
have worked and what have not. This will equip you with more knowledge on how
you’d like to run your project in practice, based on existing projects you’ve come
across.

Code of Conduct
Your community needs to feel safe, diverse & inclusive. Make sure you have a Code of Conduct for
your project & community. Read more about Contributor Covenant - A Code of Conduct for Open
Source Projects

6

https://github.com/blog/1184-contributing-guidelines
https://24pullrequests.com/projects
https://github.com/dwyl
https://github.com/foundersandcoders
https://github.com/HackBrexit
https://github.com/WeRockTech
https://github.com/womenhackfornonprofits
https://github.com/elixirkoans/elixir-koans
https://github.com/codebar
https://github.com/rails-girls-summer-of-code
https://github.com/voteamerica/voteamerica.github.io
http://contributor-covenant.org
http://contributor-covenant.org

Open Source has always been a foundation of the Internet, and with the
advent of social open source networks this is more true than ever. But free,
libre, and open source projects suffer from a startling lack of diversity, with
dramatically low participation by women, people of color, and other
marginalized populations.

— Contributor Covenant, Brief overview of the problem

An easy way to begin addressing this problem is to be overt in our openness,
welcoming all people to contribute, and pledging in return to value them as
human beings and to foster an atmosphere of kindness, cooperation, and
understanding.

— Contributor Covenant, Brief overview of the solution

GitHub template files
Issue & Pull Request templates really help keeping the project consistent & reminds people not to
leave out certain useful information.

To add an Issue template to a repository create a file called
ISSUE_TEMPLATE in the root directory. A file extension is optional, but
Markdown files (.md) are supported. Markdown support makes it easy to
add things like headings, links, @-mentions, and task lists to your templates.

— GitHub, GitHub Issue Template

Pull Request templates follows the same pattern: add a file called
PULL_REQUEST_TEMPLATE to the root directory of your repository.

— GitHub, GitHub Pull Request Template

If you’re worried about the added clutter in the root directory of your
project, we also added support for a .github/ folder. You can put
CONTRIBUTING.md, ISSUE_TEMPLATE.md, and
PULL_REQUEST_TEMPLATE.md files in .github/ and everything will work as
expected.

— GitHub, GitHub Hidden Directory for Templates

Full details from GitHub for helping people contribute to your project

7

https://help.github.com/articles/helping-people-contribute-to-your-project/

Licensing
It is not required to select a license, however by doing so, you are selecting "No License" which will
default you to the T&Cs of GitHub. GitHub have created a great informational website to help you
choose a license

Examples below from "Choose an open source license":

The MIT License is a permissive license that is short and to the point. It lets
people do anything they want with your code as long as they provide
attribution back to you and don’t hold you liable.

— Choose a License, MIT License

NOTE jQuery, .NET Core, and Rails use the MIT License.

The Apache License 2.0 is a permissive license similar to the MIT License,
but also provides an express grant of patent rights from contributors to
users.

— Choose a License, Apache License 2.0

NOTE Android, Apache, and Swift use the Apache License 2.0.

The GNU GPLv3 is a copyleft license that requires anyone who distributes
your code or a derivative work to make the source available under the same
terms, and also provides an express grant of patent rights from contributors
to users.

— Choose a License, GNU GPLv3

NOTE Bash, GIMP, and Privacy Badger use the GNU GPLv3.

When you make a creative work (which includes code), the work is under
exclusive copyright by default. Unless you include a license that specifies
otherwise, nobody else can use, copy, distribute, or modify your work
without being at risk of take-downs, shake-downs, or litigation. Once the
work has other contributors (each a copyright holder), “nobody” starts
including you.

— Choose a License, No License

CAUTION
As a consumer, if you find software that doesn’t have a license, that generally
means you have no permission from the creators of the software to use, modify,

8

https://help.github.com/articles/github-terms-of-service/
http://choosealicense.com
http://choosealicense.com

or share the software. Although a code host such as GitHub may allow you to
view and fork the code, this does not imply that you are permitted to use,
modify, or share the software for any purpose. Your options are: Ask the
maintainers nicely to add a license, Don’t use the software, Negotiate a private
license with a lawyer.

Git commit
Git commits should be small and atomic, be it a single change or small feature. This will make your
commit messages easier to write and and changes will be grouped logically. There are many
benefits to this:

• Looking back through the history will be clear & easy to understand

◦ if you want to find something

◦ undo / remove some work

• Automate the changelog generation as part of your build for tag & package etc

Commit message

• Limit the subject line to 50 characters

• Do not end the subject line with a period ..

• If more than 50 characters use the body (description)

• Wrap the body at 72 characters.

• Use the body to explain why not how, this can been seen in the code

More information Git Commit

TIP
Before doing the commit, check the git diff to make sure you are not committing
anything you do not want to, or should not be.

Little and often
Steady projects are not only more stable, but are generally more successful & are better for your
health. Trying doing a little every day or week.

Working frequently on your project gives your community confidence that you believe in your
project & are in it for the long term not just that moment.

Plan ahead
Create tasks today ready in preparation for tomorrow. There are two benefits of this, allowing you
tomorrow to immediately hit the ground running and to digest the tasks overnight as you might
make some final tweaks.

9

http://chris.beams.io/posts/git-commit/

TIP Plan a little ahead, not too much as things will change

GitHub Issue / Task
Keep these small. Tackling a large piece of work is always daunting and more difficult to find the
time. The smaller the tasks, the more likely it is to be done and the lower risk it will be. But
remember the task still needs to provide value to the project.

Include diagrams, screenshots, sub tasks & anything visual to help describe the issue & changes.

TIP
Don’t forget you can use a sub task checklist on GitHub Issues Checklist. Sub task list
are prepended with [] for incomplete & [x] for complete items.

Related

• Labels tips

Always respond - Issue and Pull Request
Always respond to Issue and Pull Request in a timely fashion, ideally within 24 hours (even if it is
with a comment acknowledging you have at least read the issue & will respond fully at a later date).
This manages expectations for when the contributor can expect a full response.

Pull Requests
If you spent the time doing the work, make sure you add a description to your your Pull Request to
make it easier for the reviewer to digest your work. Raise an Issue first so a plan of action can be
discussed before you begin the work and to remind yourself of the goals set out in that task.

Pull Requests should be linked to the original Issue it is trying to solve. This can be done with using
followed by the Issue No, e.g. #123. The Issue description will contain the information before,
therefore the Pull Request description should contain the information after the changes. Include
visual material too, for example diagrams & screenshots.

Remember, keep it small. For example if your changes contains a feature or bug fix & code styling
changes, these should be in separate Pull Requests. Every project would rather have 10 Pull
Requests, than 1 or 2 massive Pull Requests.

TIP Pull Request should be a single feature or change.

Multiple commits in a Pull Request highlight the creation steps of the Pull Request. Do not try to do
everything in a single commit.

Comments do matter, if in doubt, put it in, they can more easily be removed than added. Don’t
describe how, that is obviously in the code, describe why.

10

https://github.com/blog/1375-task-lists-in-gfm-issues-pulls-comments
index.html#_github_labels

Review
Even if it is only you on the project, try to raise Pull Requests & get a friend to review it. This
approach is invaluable as a second pair of eyes often picks up oversights.

TIP
Even simple text changes might make sense to you but not to someone else. Review
everything!

Automation - Tests, Continuous Integration (CI),
Continuous Deployment (CD)
Automate everything! This helps lower the barrier to entry & increase repeatability.

• Automated tests have many benefits & give confidence in the state & quality of the application:

◦ Unit tests are great for design & architecture of functionality

◦ Integration tests are great for the touch points

◦ End-to-end tests are great for full application testing & simulate the user

• It should be very easy to setup up a local environment & run all these tests

• Run the automated tests on Continuous Integration (CI) after someone has pushed their code
changes to a feature branch

• When automated tests are successful, deploy the application aka Continuous Delivery (CD)

NOTE
This includes database schema migrations, asset building and anything that is
required by the end product

TIP
TravisCI is highly recommended in Open Source projects. Very easy to set up & get
going, all from a simple YAML file.

Prototyping - Get a prototype to your users quickly
Get feedback as soon as possible. Get a quick and dirty prototypes in front of some of your users
will give you instant feedback and direction. Remember to make it clear it is a prototype.

TIP
When building a prototype, the technology is less important to choose for longevity
but for speed & possibly to test out potential technology solution.

Optimal time - work when at your best
People work better at different times of the day and night so find your most efficient and optimal
time. Even if that is 11pm at night or 4am, try utilise your most productive time.

11

http://travis-ci.org

Not enough time
We all have the same 24 hours in a day available to us. It’s what you do with it that counts. Try to
find a small amount of time per day, even 10 minutes when you are on the toilet - yes you heard me
right "on the toilet". Multi tasking in that situation is possible, but trying to work while watching TV
is very unproductive.

Codebase improvements - Leave the codebase better
than you found it
Many code repositories (mostly Closed Source ones) go from bad to worse. On the other hand, Open
Source projects tend to do the complete opposite due to it being in the public eye. Even the smallest
of improvements add up and really help.

TIP No improvement is too small. Make it better.

Fail fast with faster feedback loops
Feedback loops include:

1. Locally

◦ Linters

◦ Automated tests

2. Continuous Integration (CI)

◦ Linters

◦ Automated tests

◦ Deployment with Continuous Delivery (CD)

3. Manual / Exploratory testing

4. …

5. All the way to the Client and then the User

The sooner feedback and/or change the more efficient it will be. Therefore on the flip side, the later
the feedback and/or change the more costly it will be. Not only because it went through more steps
to get there, but after the change has been made, it will have to go through all those steps again.

TIP Fail fast!

Accessible
Make the project Accessible.

This has 2 areas:

12

Lower the barrier to entry

Allow all people, juniors to seniors to be part of the community & contribute.

• GitHub template more information

• Automated tests more information

• …

The resulting product needs to cater for all

Access by everyone regardless of disability (e.g. visually impaired) is critical to the success of any
project.

For example:

• Alternative alt text for images

• Keyboard input as well as mouse

• Transcripts for videos

• …and much more!

• A good place to look for ideas would be https://www.w3.org/WAI/standards-guidelines/

TIP Be inclusive

GitHub Labels
These are really useful for various reasons:

• Helps people filter their results, for example by defect, idea etc

• If people want to contribute to your project a label that states help needed will stand out

• Difficulty level. Contributors can filter by a level they are comfortable with. Having some sort of
ranking system like beginner, intermediate and expert will help to make it easier for
contributors, especially beginners to know which issues to tackle.

TIP Have different labels but don’t go label crazy, 10-20 is about right

Related

• Issues & Tasks tips

GitHub Milestones
Using Milestones not only gives you and your community visibility on the current goal and its
progress, but also the future goals and what they contain.

13

https://www.w3.org/WAI/standards-guidelines/
index.html#_github_issue_task

TIP Align your Release versions with your Milestones

Related

• Release tips

GitHub Releases / Tags
When you are happy with the work done so far, make a Release so your community knows, this is
a stable version. In the release notes, include change log.

TIP Align your Release versions with your Milestones

Related

• Milestone tips

Branching
Branching is important when working with a team, and even more important when working with a
wider team you don’t even know yet.

Protect your mainline branch (usually master or develop) and everything must go via a feature
branch and a Pull Request. This should be the same for everyone, public contributors and
approved maintainers.

TIP
There are many branching strategies, one example is Gitflow, many people use part of
Gitflow.

Related

• Pull Requests

14

index.html#_github_releases_tags
index.html#_github_milestones
http://nvie.com/posts/a-successful-git-branching-model/
index.html#_pull_requests

DON’Ts

Big bang project
Don’t try to complete the project in a manic weekend, then ignore it for the next year. This is not
good for your health nor does it look good for your project from the community’s view.

TIP
Try to be consistent and do a little every week. Your thoughts and ideas will be better
over time, this will prevent you from wasting time on redoing work when you get a
light bulb moment a few days later.

God commit
God commits or big bang commits are not good because they are difficul to understand and review,
these can block pull requests.

Also if a commit needs to be cherry picked in/out, then it makes it very difficult.

For example if files are being reformatted, this should be done in 1 commit, not with other changes
otherwise it is confusing.

TIP Each commit should do one single item

God Pull Request
Similar to "god commit", god pull request are a bad idea. Reviewing god or big bang pull request are
not only annoying & painful, but leave room for skim reviewing & therefore mistakes. A pull
request should be a single feature.

TIP No one ever complained that a Pull Request was too small.

CV Driven Development
Most of us have heard of Test Driven Development (TDD). Do not fall in to the trap of CV Driven
Development (CVDD). It is good to push your skills with new technology but do a little at a time to
reduce the risk. Do not try every new technology you want to learn on the same project, this is very
high risk, with the mostly likely outcome of little result & therefore frustration.

TIP
Approximately 10 - 20% of new technology per project is a good, safe & exciting
amount.

Weakest Dependency
Your project is only as good as your weakest dependency. Check the dependencies you include in
your project before including them, look at their:

15

• license

• contribution activity

• security

• contributors

TIP
Be aware of dependencies you include. It is great not to reinvent the wheel, there are
usually a lot of choices available but make sure to do your research on the available
libraries.

16

Appendix

Acronyms
Table 1. Acronyms

Acronym Description Notes

TDD Test Driven Development GOOD! Wikipedia

BDD Behaviour Driven Development GOOD! Wikipedia

CVDD CV Driven Development BAD!

Resources

TIP Suggestions welcome…read more at how to contribute

A great way to get involved in open source is to contribute to the existing
projects you’re using. GitHub is home to more than 5 million open source
projects. There are projects for every skill set like recipes, HTML/CSS, Ruby,
Astrophysics and many more. This guide will cover what you might find in a
typical project and how to make a great contribution.

— Contributing to Open Source on GitHub, https://guides.github.com/activities/contributing-to-open-source/

Open source works by having many people contribute to the creation and
maintenance of software. Thing is, it works well only when people are
actually contributing. Successful open source projects thrive on a wide
variety of contributions from people with all levels of coding skills and
commitment. If just one person fixes a compiler warning, closes a bug, or
adds to the documentation, pretty soon you’re talking real progress. For
many people, the hardest part is just getting started. So here are some
suggested ways you can begin contributing right away, at whatever level is
most comfortable for you.

— The Beginner’s Guide to Contributing to Open Source Projects, https://blog.newrelic.com/2014/05/05/open-
source_gettingstarted/

GitHub is the home of many popular open source projects like Ruby on
Rails, jQuery, Docker, Go and many others. The way people (usually)
contribute to an open source project on GitHub is using pull requests. A pull
request is basically a patch which includes more information and allows
members to discuss it on the website.

17

https://en.wikipedia.org/wiki/Test-driven_developmentp
https://en.wikipedia.org/wiki/Behavior-driven_development
https://github.com/eddiejaoude/book-open-source-tips/blob/master/.github/CONTRIBUTING.md

— How to contribute to an open source project on GitHub, http://blog.davidecoppola.com/2016/11/howto-
contribute-to-open-source-project-on-github/

It’s okay to not know everything, and take one step at a time to learn
something new. Don’t waste a lot of time choosing the “right” project. If you
know a project or a organization with a beginner-friendly community, just
start there. A huge shout-out to all the open source maintainers who have
been super responsive and encourage of new contributors. You are helping
newcomers navigate huge code bases and contribute in maybe a small yet
meaningful ways. Your efforts are truly appreciated and needed.

— A Beginner’s Very Bumpy Journey Through The World of Open Source,
https://medium.freecodecamp.com/a-beginners-very-bumpy-journey-through-the-world-of-open-source-
4d108d540b39#.an82epenf

You want to focus on the building blocks for your community before you get
too deep in the code. "We’ll do it right later" doesn’t always work out well. If
you don’t make governance decisions now, things can fall apart, or if you
make the wrong decision, it could turn off potential community members
going forward.

— How to care for the community over the code, https://opensource.com/article/16/12/community-over-code

For many web developers, accessibility is complex and somewhat difficult.
The Accessibility Project understands that and we want to help to make web
accessibility easier for front end developers to implement. Blind and
visually impaired make up 285,000,000 people according to the World
Health Organization (June 2012) with 39,000,000 categorized as legally blind
and the remaining 246,000,000 visually impaired. Deaf and hearing
impaired make up 275,000,000 (2004) in the moderate-to-profound hearing
impairment category.

— Web Accessibility Checklist, http://a11yproject.com/checklist.html

18

	Open Source Tips
	Table of Contents
	Preface
	Introduction
	DOs
	Readme file
	Code block
	Contribution file
	Explore open source projects
	Code of Conduct
	GitHub template files
	Licensing
	Git commit
	Little and often
	Plan ahead
	GitHub Issue / Task
	Always respond - Issue and Pull Request
	Pull Requests
	Review
	Automation - Tests, Continuous Integration (CI), Continuous Deployment (CD)
	Prototyping - Get a prototype to your users quickly
	Optimal time - work when at your best
	Not enough time
	Codebase improvements - Leave the codebase better than you found it
	Fail fast with faster feedback loops
	Accessible
	GitHub Labels
	GitHub Milestones
	GitHub Releases / Tags
	Branching

	DON’Ts
	Big bang project
	God commit
	God Pull Request
	CV Driven Development
	Weakest Dependency

	Appendix
	Acronyms
	Resources

